Publikationen
40. Poehlein A, Zeldes B, Flaiz M, Böer T, LüschenA, Höfele F, Baur KS, Molitor B, Kröly C, Wang M, Zhang Q, Fan X, Chao W, Daniel R, Li F,
Basen M, Müller V, Angenent LT, Sousa DZ, Bengelsdorf FR- 2024. Advanced aspects of acetogens. Bioresour Technol (accepted)
39. Döring C, Basen M. 2024. Propionate production by Bacteroidia gut bacteria and its dependence on substrate concentrations differs among
species. Biotechn Biofuels Bioprod 17: 95 https://doi.org/10.1186/s13068-024-02539-9
38. Böer T, Schüler AM, Lüschen A, Eysell L, Dröge J, Heinemann M Engelhardt L, Basen M, Daniel R, Poehlein A. 2024.
Isolation and characterization of novel acetogenic strains of the genera Terrisporobacter and Acetoanaerobium. Front Microbiol 15: 1426882
doi.org/10.3389/fmicb.2024.1426882 .
37. Böer T, Engelhardt L, Lüschen A, Eysell L, Yoshida H, Schneider D, Angenent LT, Basen M, Daniel R, Poehlein A. 2024. Isolation and
characterization of novel acetogenic Moorella strains for employment as potential thermophilic biocatalysts. FEMS Microbiol Ecol
(accepted for publication)
36. Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J,
Müller V, Schönheit P, Siebers B, Vorgias K 2024. Extremophiles in a changing world.
Extremophiles 28, 26. https://doi.org/10.1007/s00792-024-01341-7
35. Loeffler H, Waletzko-Hellwig J, Fischer R-J, Basen M, Frank M, Jonitz-Heincke A, Bader R, Klinder A.2024.
Systematic enhancement of microbial decontamination efficiency in bone graft processing by means of high hydrostatic pressure
using Escherichia coli as a model organism. J Biomed Mater Res 112:e35383. https://doi.org/10.1002/jbm.b.35383
34. Baum, C, Zeldes B, Poehlein A, Daniel R, Mueller V, Basen M. 2024.The energy-converting hydrogenase Ech2 is important
for growth of the thermophilic acetogen Thermoanaerobacter kivui on ferredoxin-dependent substrates.
Microbiol Spectr. https://journals.asm.org/doi/pdf/10.1128/spectrum.03380-23?download=true
33. Nissen LN, Moon J, Hitschler L, Basen M. 2024. A versatile aldehyde:ferredoxin oxidoreductase from the organic acid
reducing Thermoanaerobacter sp. strain X514. Int J Mol Sci 25: 1077. https://doi.org/10.3390/ijms25021077
32. Lehmann M, Prohaska C, Zeldes B, Poehlein A, Daniel, R, Basen M. 2023. Adaptive laboratory evolution of a thermophile
toward a reduced growth temperature optimum. Front Microbiol 14: 1265216. https://doi.org/10.3389/fmicb.2023.1265216
31. Basen M., Müller V. 2023. Editorial: Acetogens: From the origin of life to biotechnological applications.
Frontiers Microbiol 14:1186930. https://doi.org/10.3389/fmicb.2023.1186930
30. Zeldes B, Poehlein A, Jain S, Baum C, Daniel R, Müller V, Basen M. 2023. DNA uptake from a laboratory
environment drives unexpected adaptation of a thermophile to a minor medium component. ISME Communications, 3:2.
29. Houfani AA, Basen M, Olson DG, Blumer-Schuette SE. 2022. Editorial: Extremophiles in Lignocellulose Degradation. Frontiers in
Microbiology 13, 915291. DOI: 10.3389/fmicb.2022.915291
28. Jain S, Katsyv A, Basen M, Müller V., 2021. The monofunctional CO dehydrogenase CooS is essential for growth
of Thermoanaerobacter kivui on carbon monoxide. Extremophiles. (in press)
27. Katsyv A, Jain S, Basen M, Müller V, 2021. Electron carriers involved in autotrophic and heterotrophic acetogenesis in
the thermophilic bacterium Thermoanaerobacter kivui. Extremophiles. (online) https://doi.org/10.1007/s00792-021-01247-8
26. Hitschler L, Nissen LS, Kuntz M, Basen M*. 2021. Alcohol dehydrogenases AdhE and AdhB with a broad substrate range
are important enzymes for organic acid reduction in Thermoanaerobacter sp. strain X514.
Biotechnology for Biofuels"14:187" Hitschler et al. Biotechnol Biofuels
25. Rodionov D, Rodiononva I, Rodionov V, Arzamazov A, Zhang K, Rubinstein G, Tanwee T, Bing R, Crosby J, Nookaeew I,
Basen M, Brown S, Wilson C, Klingeman D, Poole II F, Zhang Y, Kelly R, Adams M. 2021. Transcriptional regulation of
plant biomass degradation and carbohydrate utilization genes in the extreme thermophile Caldicellulosiruptor bescii.
mSystems, 6: e0134520.
24. Katsyv A, Schoelmerich MC, Basen M, Müller V. (2021). Pyruvate:ferredoxin oxidoreductase of the
thermophilic acetogen Thermoanaerobacter kivui. FEBS Open Bio 11, 1332–1342. https://doi.org/10.1002/2211-5463.13136
23. Pfeifer K, Ergal I, Koller M, Basen M, Schuster B, Rittmann SKM 2021. Archaea biotechnology.
Biotechnol Adv 47, 107668. https://doi.org/10.1016/j.biotechadv.2020.107668
22. Basen M, Kurrer S. 2020. A close look at pentose metabolism of gut bacteria. FEBS J, doi:10.1111/febs.15575. (commentary)
21. Moon J, Jain S, Müller V, Basen M. 2020. Homoacetogenic conversion of mannitol by the thermophilic acetogenic bacterium Thermoanaerobacter
kivui requires external CO2. Front Microbiol, 11:571736
20. Schwarz F, Ciurus S, Jain S, Baum C, Wiechmann A, Basen M, Müller V. 2020. Revealing formate production from carbon monoxide in wild
type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui. Microb Biotechnol, 13:2044-2056.
19. Jain S, Dietrich HD, Müller V, Basen M. 2020. Formate is required for growth of the thermophilic acetogenic bacterium Thermoanaerobacter kivui
lacking hydrogen-dependent carbon dioxide reductase (HDCR). Front Microbiol, 11:59.
18. Nissen L, Basen M.2019. The emerging role of aldehyde:ferredoxin oxidoreductases in microbially-catalyzed alcohol production.
J Biotechnol, 306:105–117.
17. Moon J, Henke L, Merz N, Basen M. 2019. A thermostable mannitol-1-phosphate dehydrogenase is required in mannitol metabolism
of the thermophilic acetogenic bacterium Thermoanaerobacter kivui. Environ Microbiol21: 3728–3736.
16. Hitschler L, Kuntz M, Langschied F, Basen M.2018. Thermoanaerobacter species differ in their potential to reduce organic acids to their
corresponding alcohols. Appl Microbiol Biotechnol 102: 8465–8476.
15. Hitschler L, Basen M. 2018. Hitzeliebende Mikroorganismen als Produktionsplattform für Biobrennstoffe. Biospektrum 24: 152–155.
(non peer-reviewed)
14. Müller V, Chowdhury NP, Basen M. 2018. Electron Bifurcation: A Long- Hidden Energy-Coupling Mechanism. Ann Rev Microbiol 72:331–53.
13. Poudel S, Giannone RJ, Basen M., Nookaew I, Poole FL, Kelly RM, Adams MWW, Hettich RL. 2018. The diversity and specificity of the
extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate.
Biotechnol Biofuels 11:80.
12. Basen M, Geiger I, Henke L, Müller V. 2018. A genetic system for the thermophilic acetogenic bacterium Thermoanaerobacter kivui.
Appl Environ Microbiol. 84:e02210–17.
11. Basen M, Müller V.2017. “Hot" acetogenesis. Extremophiles 21:15–26. (Review article)
10. Nguyen DMN, Lipscomb GL, Schut GJ, Vaccaro BJ, Basen M, Kelly RM, Adams MWW.2016. Temperature-dependent acetoin production by Pyrococcus
furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. Metab Eng 34:71–79.
09. Scott IM, Rubinstein GM, Lipscomb GL, Basen M, et al.2015. A new class of tungsten-containing oxidoreductase in Caldicellulosiruptor, a genus of plant
biomass-degrading thermophilic bacteria. Appl Environ Microbiol 81:7339–7347.
08. Keller M, Loder A, Basen M, Izquierdo J, Kelly RM, Adams MWW. 2014. Production of lignofuels and electrofuels by extremely thermophilic microbes. Biofuels
5:499–515. (Review article)
07. Basen M, Schut GJ, Nguyen DM, Lipscomb GL, Benn RA, Prybol CJ, Vaccaro BJ, Poole FL, Kelly RM, Adams MWW.2014. Single gene insertion drives bioalcohol
production by a thermophilic archaeon. Proc Natl Acad Sci USA 111:17618-17623.
06. Basen M, Rhaesa AM, Kataeva I, Prybol CJ, Scott IM, Poole FL, Adams MWW.2014. Degradation of high loads of crystalline cellulose and of unpretreated plant
biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresource Technol 152:384-392.
05. Kataeva I, Foston MB, Yang SJ, Pattathil S, Biswal AK, Poole FL, Basen M, Rhaesa AM, Thomas TP, Azadi P, Olman V, Saffold TD, Mohler KE, Lewis DL, Doeppke C,
Zeng YN, Tschaplinski TJ, York WS, Davis M, Mohnen D, Xu Y, Ragauskas AJ, Ding SY, Kelly RM, Hahn MG, Adams MWW. 2013. Carbohydrate and lignin are
simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energ Environ Sci 6:2186–2195.
04. Siegert M, Taubert M, Seifert J, von Bergen-Tomm M, Basen M, Bastida F, Gehre M, Richnow H-H, Krüger M. 2013. The nitrogen cycle in anaerobic methanotrophic
mats of the Black Sea is linked to sulfate reduction and biomass decomposition. FEMS Microbiol Ecol 86:231–245.
03. Basen M, Sun JS, Adams MWW.2012. Engineering a hyperthermophilic archaeon for temperature-dependent product formation. mBio 3:e00053–00012.
02. Hobbie SN, Li X, Basen M, Stingl U, Brune A.2012. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a
humus-feeding scarab beetle larva. Syst Appl Microbiol 35:226–232.
01. Basen M, Krüger M, Milucka J, Kuever J, Kahnt J, Grundmann O, Meyerdierks A, Widdel F, Shima S. 2011. Bacterial enzymes for dissimilatory sulfate reduction
in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environ Microbiol 13:1370–1379.